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Abstract. We investigate the electronic instabilities of the small-diameter (3, 3) carbon nanotubes by
studying the low-energy perturbations of the normal Luttinger liquid regime. The bosonization approach
is adopted to deal exactly with the interactions in the forward-scattering channels, while renormalization
group methods are used to analyze the low-energy instabilities. In this respect, we take into account the
competition between the effective e–e interaction mediated by phonons and the Coulomb interaction in
backscattering and Umklapp channels. Moreover, we apply our analysis to relevant experimental conditions
where the nanotubes are assembled into large three-dimensional arrays, which leads to an efficient screening
of the Coulomb potential at small momentum-transfer. We find that the destabilization of the normal
metallic behavior takes place through the onset of critical behavior in some of the two charge stiffnesses
that characterize the Luttinger liquid state. From a physical point of view, this results in either a divergent
compressibility or a vanishing renormalized velocity for current excitations at the point of the transition.
We observe anyhow that this kind of critical behavior occurs without the development of any appreciable
sign of superconducting correlations.

PACS. 71.10.Pm Fermions in reduced dimensions – 73.22.-f Electronic structure of nanoscale materials:
clusters, nanoparticles, nanotubes, and nanocrystals – 73.63.Fg Nanotubes

1 Introduction

The development of nanoscale technology during the last
decade has attracted much attention on carbon nan-
otubes, which are among the most promising candidates to
fabricate molecular-size devices. This is mainly due to the
wide variety of their electronic and transport properties,
which can result in metallic [1], semiconducting [2] or even
superconducting behavior [3], depending on geometry and
the way of assembling.

From a theoretical point of view, the confinement of
electrons in the longitudinal dimension of the nanotubes
induces the so-called Luttinger liquid behavior [6–10].
This is characterized, for instance, by the power-law de-
pendence of the differential conductance, which has been
actually observed experimentally [4,5].

Such a behavior breaks down anyhow at sufficiently
low temperature, and the nanotubes enter a different
regime, usually driven by the quality of the contacts in
the experimental setup. In particular, in the case of very
transparent contacts, it has been observed that carbon
nanotubes may develop superconducting correlations, in-
herited from superconducting electrodes (proximity ef-
fect) [3] as well as intrinsic to large assemblies of massive
ropes [11,12].
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The superconducting instability is anyway in compe-
tition with the so-called Peierls (or charge-density-wave)
instability, which may induce a metallic-semiconducting
transition caused by a lattice distortion. The mean-field
temperature TP of such a transition has been estimated
by means of detailed calculations, and it is predicted to in-
crease as the radius of the nanotubes becomes smaller [13].
For tubes of typical radius, calculations find a very low
(undetectable) value of TP , while for thinner nanotubes it
is predicted to be significantly larger and competing with
the superconducting critical temperature.

Nevertheless, superconductivity at about 15 K has
been claimed to occur in 4 Å-diameter nanotubes [14]. In
the experiment reported in reference [14], a strong diamag-
netic behavior was interpreted as an anisotropic Meissner
effect, while a genuine superconducting transition was not
observed. This has opened some controversy on this issue,
since ab initio simulations predict a room-temperature
Peierls transition in the allowed 4 Å-diameter geometries,
namely in the (5, 0) [15] and the (3, 3) nanotubes [16].
On the other hand, mean-field calculations for the (5, 0)
nanotubes seem to find a superconducting instability, but
with a critical temperature of about 1 K [17].

In this paper we investigate the low-energy proper-
ties of the (3, 3) nanotubes by focusing on the insta-
bilities of the Luttinger liquid behavior. We study care-
fully the competition between the effective e–e interaction
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mediated by phonons and the Coulomb repulsion. The
bosonization technique is applied in order to deal exactly
with the interactions in the forward-scattering channels,
while renormalization group methods are used to approach
the low-energy instabilities of the system, driven by the
backscattering and Umklapp interactions. Moreover, we
pay also special attention to the experimental conditions
reported in reference [14], which lead to large arrays of
nanotubes embedded in a zeolite matrix. This gives rise
to a large screening of the Coulomb potential, which has
no counterpart in the case of single nanotubes [18,19]. We
study this effect by means of a generalized RPA approach,
showing that the long-range intertube coupling produces
an efficient screening of the intratube interactions with
small momentum-transfer.

The most important result of the present study is the
finding of two different low-energy phases characterized by
critical (nonanalytic) behavior of the physical observables.
Under the conditions corresponding to the experimental
samples described in reference [14], the critical behavior is
related to the vanishing of one of the Luttinger liquid pa-
rameters, and it is qualitatively consistent with the large
diamagnetic signal observed in reference [14]. We also ob-
serve that this kind of singularity occurs well before the
development of any sizeable superconducting or charge-
density-wave correlations in the electron system.

2 Luttinger liquid approach
to forward-scattering interactions

We start by paying attention to the interactions medi-
ated by the Coulomb potential, which provides a strong
source of repulsion between electrons in single nanotubes.
In the tubular nanotube geometry, the Coulomb potential
is given by [7]

VC(r − r′) =
e2/κ√

(x − x′)2 + 4R2 sin2[(y − y′)/2R] + a2
z

(1)
where the x coordinate goes along the longitudinal di-
rection and y is the coordinate around the waist of the
nanotube. R is the nanotube radius and the parame-
ter az � 1.6 Å is dictated by the size of the π carbon
orbitals [7]. The screening by the environment of exter-
nal charges is in general encoded in the dielectric con-
stant κ. For the sake of studying the nanotube transport
properties, it is more convenient do deal with the one-
dimensional (1D) projection of the potential onto the lon-
gitudinal dimension of the nanotube. This is achieved by
integration of the circular coordinate, upon which we ob-
tain the 1D Coulomb potential ṼC(k) depending on the
longitudinal momentum-transfer k [20]

ṼC(k) ≈ 2e2

κ
log

(
kc + k

k

)
, (2)

kc is in general of the order of the inverse of the nanotube
radius R, as it is the memory that the 1D projection keeps
of the finite transverse size.

Fig. 1. Small momentum-transfer processes corresponding to

the couplings g
(4)
4 and g

(4)
2 .

Fig. 2. Small momentum-transfer processes corresponding to

the couplings g
(2)
2 and g

(2)
4 .

The relative strength of the Coulomb interaction is
given by the dimensionless ratio between e2 and the
Fermi velocity vF , which can be evaluated from the con-
stant e2/c ≈ 1/137 and the estimated Fermi velocity for
the (3, 3) nanotubes [21]. This turns out to be vF ≈
7.5 × 105 m s−1, which leads to a ratio e2/vF ≈ 2.9. This
means that the Coloumb potential should give the dom-
inant interaction in the forward-scattering channels, at
least in single nanotubes. The processes can be classified
depending on the low-energy linear branches involved in
the electron-electron scattering [22]. We recall at this point
that the low-energy modes of the (3, 3) nanotubes lie in
a bonding and an antibonding subband that cross at two
Fermi points (in the undoped system) with opposite lon-
gitudinal momenta [21]. We can distinguish in particular
four forward-scattering channels, labelled by their respec-
tive couplings as represented in Figures 1 and 2. In these
processes there is a nominally strong Coulomb repulsion
between the electrons, as they scatter without change of
their chirality and the interaction strength is simply given
by the Coulomb potential (2).
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Fig. 3. Schematic representation of the low-energy branches
arising from the bonding and the antibonding subband of the
armchair nanotubes.

The interaction channels represented in Figures 1
and 2 are only part of the complete catalogue of scat-
tering processes, that may be classified according to the
chiralities and momentum-transfer for the interacting elec-
trons [22]. It has become usual to assign respective cou-
pling constants g

(j)
i to the interaction channels, in such a

way that the lower index discerns whether the interacting
particles shift from one Fermi point to the other (i = 1),
remain at different Fermi points (i = 2), or they interact
near the same Fermi point (i = 4). The upper label fol-
lows the same rule to classify the different combinations
of left-movers and right-movers, including the possibility
of having Umklapp processes (j = 3). As we will see, the
couplings for the channels with large momentum-transfer
2kF or change of chirality of the interacting electrons
have an strength which is sensibly smaller than that of
the forward-scattering couplings represented in Figures 1
and 2.

A very important point is that the system with
just the forward-scattering interactions g

(4)
4 , g

(4)
2 , g

(2)
2 and

g
(2)
4 is exactly solvable by means of bosonization tech-

niques [23–25]. Thus, no matter that the Coulomb repul-
sion may place these interaction channels in the strong-
coupling regime, the availability of an exact solution
makes possible to capture the nonperturbative effects
coming from the Coulomb interaction. The bosonization
techniques make use of the fact that the forward-scattering
interactions can be written in terms of the electron den-
sity operators corresponding to the different electron fields
Ψriσ for the linear branches shown in Figure 3. We adopt
a notation in which the index r = L, R is used to label the
left- or right-moving character of the linear branch, and
the index i = 1, 2 to label the Fermi point. The index σ
stands for the two different spin projections. We may ac-
tually introduce the charge and spin density operators

ρri(x) =
1√
2

(
Ψ †

ri↑(x)Ψri↑(x) + Ψ †
ri↓(x)Ψri↓(x)

)
(3)

σri(x) =
1√
2

(
Ψ †

ri↑(x)Ψri↑(x) − Ψ †
ri↓(x)Ψri↓(x)

)
. (4)

As long as the Coulomb interaction and the interaction
mediated by exchange of phonons do not depend on the
spin of the interacting electrons, we will carry out the sub-
sequent discussion in terms of the charge density operators
ρri(x).

It is convenient, for instance, to introduce operators
for the sum and the difference of charge densities in the
bonding and the antibonding subbands of the armchair
nanotubes:

ρR±(k) =
1√
2
(ρR1(k) ± ρR2(k)) (5)

ρL±(k) =
1√
2
(ρL2(k) ± ρL1(k)). (6)

In terms of these operators, the Hamiltonian for the
forward-scattering interactions can be written in the form

HFS =
1
2
vF

∫ kc

−kc

dk
∑

r=L,R

∑
i=±

ρri(k)ρri(−k)

+
1
2

∫ kc

−kc

dk

2π
2

(
ρR+(k)

(
g
(4)
4 + g

(4)
2

)
ρR+(−k)

+ρL+(k)
(
g
(4)
4 + g

(4)
2

)
ρL+(−k)

+ρR−(k)
(
g
(4)
4 − g

(4)
2

)
ρR−(−k)

+ρL−(k)
(
g
(4)
4 − g

(4)
2

)
ρL−(−k)

+2ρR+(k)
(
g
(2)
2 + g

(2)
4

)
ρL+(−k)

+2ρR−(k)
(
g
(2)
2 − g

(2)
4

)
ρL−(−k)

)
. (7)

where kc stands again for the momentum cutoff dictated
by the transverse size of the nanotube.

We observe that the symmetric and the antisymmet-
ric combination of the charge operators in the two low-
energy subbands decouple in the Hamiltonian (7). This
can be completely diagonalized by first introducing boson
fields Φ+(x) and Φ−(x) (and their respective conjugate
momenta, Π+(x) and Π−(x)) defined by

∂xΦ+(x) =
√

π(ρL+(x) + ρR+(x)) (8)
∂xΦ−(x) =

√
π(ρL−(x) + ρR−(x)). (9)

The Hamiltonian can be rewritten then in the form

HFS =
1
2
u+

∫
dx

(
K+(Π+(x))2 +

1
K+

(∂xΦ+(x))2
)

+
1
2
u−

∫
dx

(
K−(Π−(x))2 +

1
K−

(∂xΦ−(x))2
)

(10)

with renormalized velocities u+, u− and charge stiffnesses
K+, K− given by the expressions

u±K± = vF +
1
π

(
g
(4)
4 ± g

(4)
2 −

(
g
(2)
2 ± g

(2)
4

))
(11)

u±/K± = vF +
1
π

(
g
(4)
4 ± g

(4)
2 +

(
g
(2)
2 ± g

(2)
4

))
. (12)

Upon application of the canonical transformation

Φ+ =
√

K+Φ̃+ , Π+ =
1√
K+

Π̃+ (13)

Φ− =
√

K−Φ̃− , Π− =
1√
K−

Π̃− (14)
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Fig. 4. Self-consistent diagrammatic equation representing the
screening of the Coulomb potential between charges at nan-
otubes l and l′. The sum over l′′ accounts for the polarization
effects from all the nanotubes in the array.

the Hamiltonian (10) becomes that of a couple of noninter-
acting boson fields. This picture, in which the low-energy
excitations are just given by charge fluctuations (and spin
fluctuations with unrenormalized velocity), is what char-
acterizes the Luttinger liquid regime of the electron sys-
tem [23,24]. The charge stiffnesses and the renormalized
velocities in the two different charge sectors dictate for in-
stance the thermodynamic and transport properties, en-
coded into the compressibilities κ±, the Drude weights
D± and the dependence of the specific heat Cv on the
temperature T [26]:

κ± =
2
π

K±
u±

(15)

D± = 2u±K± (16)
Cv

T
=

π

3

(
1

u+
+

1
u−

)
. (17)

The above picture will be complemented later by includ-
ing the effect of the backscattering and Umklapp interac-
tions, that tend to destabilize the Luttinger liquid regime
at low temperatures. At this point, we stress that the ro-
bustness of such a regime depends on the strength of the
Coulomb interaction. The consideration of the screening
effects induced by the environment becomes then quite
relevant, specially in the case of a large assembly of nan-
otubes [18,19]. For the nanotube array described in refer-
ence [14], the long-range Coulomb repulsion gives rise to
a nonnegligible interaction between electronic currents in
different nanotubes. If we label these by their respective
positions l and l′ in the transverse section of the array,
the intertube Coulomb potential can be expressed as

Vl,l′(k) ≈ 2e2

κ
K0(|l − l′|k), (18)

where k denotes the longitudinal momentum-transfer. We
recall that the Bessel function K0(x) is logarithmically di-
vergent in the limit x → 0. For l = l′, there is implicit a
short-distance cutoff given by the radius of the nanotube,
which leads then to the potential (2). The important point
is that the intertube Coulomb potential gives rise to quite
significant screening effects at small momentum-transfer,
which modify appreciably the strength of the forward-
scattering couplings described above.

In order to take into account the interaction among all
the nanotubes in the array, we can adopt a generalization
of the RPA scheme used in reference [27] for the study of
2D layered systems. In our case, the screened Coulomb po-
tential V

(r)
l,l′ (k) has to satisfy the self-consistent diagram-

matic equation shown in Figure 4, with l′′ running over

all the positions of the nanotubes in the array. We have
then

V
(r)
l,l′ (k) = Vl,l′(k) + Π

∑
l′′

Vl,l′′(k)V
(r)
l′′,l′(k), (19)

where Π stands for the polarization of each 1D elec-
tron system. This function is known exactly at small
momentum-transfer [24], and here it appears multiplied
by the number of subbands n = 2 contributing at low-
energies:

Π(k, ω) = 2n
1
π

vF k2

ω2 − v2
F k2

. (20)

Equation (19) can be easily solved by introducing the
Fourier transform of the Coulomb potential with respect
to the nanotube position l in the 2D transverse section of
the array. We define for instance φ(p, k) by

Vl,l′(k) =
(

d

2π

)2 ∫

BZ

d2pφ(p, k) eip·(l−l′), (21)

where d stands for the nanotube separation and BZ de-
notes that the integration is over the Brillouin zone for
the nanotube lattice in the transverse section of the array.
We define similarly φ(r)(p, k) as the Fourier transform of
V

(r)
l,l′ (k). The expression of equation (19) becomes then in

momentum space

φ(r)(p, k) = φ(p, k) + Π φ(p, k)φ(r)(p, k). (22)

In what follows, we will stick to the solution of this equa-
tion at ω = 0, for the sake of giving a simpler description
of the screening effects in the static limit.

Within our RPA scheme, the screened Coulomb po-
tential becomes finally

V
(r)
l,l′ (k) =

(
d

2π

)2 ∫

BZ

d2p
φ(p, k)

1 + 2nφ(p, k)/πvF
eip·(l−l′).

(23)
The most important property of V

(r)
l,l′ (k) is that it sat-

urates at a finite value in the limit k → 0. This is
a reflection of the fact that, for distances much larger
than the nanotube separation, the array screens effectively
the Coulomb interaction as a 3D system. Thus, taking
a value of the bare coupling e2 ≈ 2.9vF , we find that
the intratube potential at vanishing momentum-transfer
is V

(r)
l,l (k = 0) ≈ 0.75vF (for κ = 1). This value depends

slightly on the dielectric constant, as represented in Fig-
ure 5. We will take this strength of the screened intratube
Coulomb potential at k = 0 as an input for the values
of the forward-scattering couplings g

(4)
4 , g

(4)
2 , g

(2)
2 and g

(2)
4

within each nanotube in the array.
A closer look at the above analysis shows that the

Coulomb potential between nearest-neighbor nanotubes
also gives rise to relevant interaction channels. The new
couplings needed for a consistent description of the inter-
action processes are catalogued in Figure 7. They adhere
to the same rules used to label the intratube couplings,
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Fig. 5. Dependence of the screened intratube Coulomb poten-
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Fig. 6. Dependence of the screened intertube Coulomb poten-
tial (in units of vF ) on the dielectric constant κ.

but with a tilde to distinguish their intertube charac-
ter. In particular, the intertube forward-scattering inter-
actions g̃

(2)
2 and g̃

(2)
4 (preserving the chirality of the elec-

trons within each nanotube) are affected by the screening
effects described above, as they are corrected by the po-
larization of the different nanotubes in the array. Their
strength is given by the intertube Coulomb potential,
which keeps only a nonnegligible value between nearest-
neighbor tubes, after screening by the nanotube array.
Taking again e2 ≈ 2.9vF , the intertube potential for
|l − l′| = d has a value at vanishing momentum-transfer
V

(r)
l,l′ (k = 0) ≈ 0.007vF (for κ = 1). The dependence of this

strength on the dielectric constant is shown in Figure 6.
Although the relative strength of the intertube forward-
scattering couplings g̃

(2)
2 and g̃

(2)
4 may appear small, these

are however significant as they influence the scaling of the
rest of interactions at low energies, as we will see in what
follows.

3 Renormalization group scaling
of the interactions

On the other hand, the intertube chirality-breaking inter-
actions g̃

(1)
2 , g̃

(1)
4 , g̃

(3)
2 and g̃

(3)
4 give rise to a different kind

of screening processes, of the type represented in Figure 8.
The effect of these processes cannot be captured in the

Fig. 7. Intertube interactions arising from the coupling be-
tween electronic currents in nearest-neighbor nanotubes l and
l′ of a 3D array. The full (dashed) lines represent the propaga-
tion of electrons with right (left) chirality, and the labels 1, 2
denote the respective Fermi points. The dashed lines (without
arrow) stand for the intertube Coulomb potential.

l’

l’

l

l

l

l

Fig. 8. Second-order process renormalizing backscattering in-
teractions at a given nanotube l through the coupling with the
nearest-neighbors l′ in a 3D array of nanotubes. The dashed
lines (without arrow) stand for the intertube Coulomb poten-
tial.

RPA scheme described above, as the polarization with a
change of chirality in the particle-hole pair diverges log-
arithmically at low energies. As long as the corrections
depend on the 1D cutoff, they give rise instead to new
screening contributions to the scaling equations for the
rest of interactions. We recall that the scaling equations
for the interactions of single armchair nanotubes have
been obtained in reference [22] (up to terms quadratic
in the couplings). We have found that, after incorporating
the corrections from the intertube interactions, the scaling
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equations for the intratube couplings become

∂g
(1)
1

∂l
= − 1

πvF

(
g
(1)
1 g

(1)
1 + g

(2)
1 g

(1)
2

+g
(3)
1 g

(3)
1 − g

(3)
1 g

(3)
2

)
(24)

∂g
(2)
1

∂l
=

(
1 − 1

K−

)
g
(2)
1 − 1

πvF

(
g
(1)
2 g

(1)
1

−g
(3)
4 g

(3)
1

)
(25)

∂g
(3)
1

∂l
= (1 − K+)g(3)

1 − 1
πvF

(2g
(3)
1 g

(1)
1

−g
(3)
2 g

(1)
1 − g

(3)
4 g

(2)
1 ) (26)

∂g
(1)
2

∂l
=

(
1 − 1

K−

)
g
(1)
2 − 1

πvF

(
2g

(1)
4 g

(1)
2 − g

(1)
4 g

(2)
1

+g
(2)
1 g

(1)
1 + g

(3)
4 g

(3)
2 − g

(3)
4 g

(3)
1

+12g̃
(1)
4 g̃

(1)
2 + 12g̃

(3)
4 g̃

(3)
2

)
(27)

∂g
(2)
2

∂l
= − 1

2πvF

(
g
(1)
2 g

(1)
2 + g

(1)
1 g

(1)
1

+g
(2)
1 g

(2)
1 − g

(3)
2 g

(3)
2

)
(28)

∂g
(3)
2

∂l
= (1 − K+)g(3)

2 − 1
πvF

(
2g

(1)
4 g

(3)
2

+g
(3)
4 g

(1)
2 − g

(3)
4 g

(2)
1 − g

(1)
4 g

(3)
1

+12g̃
(1)
4 g̃

(3)
2 + 12g̃

(3)
4 g̃

(1)
2

)
(29)

∂g
(1)
4

∂l
= − 1

πvF

(
g
(1)
4 g

(1)
4 + g

(1)
2 g

(1)
2 − g

(2)
1 g

(1)
2

+g
(3)
2 g

(3)
2 − g

(3)
2 g

(3)
1

+6g̃
(1)
4 g̃

(1)
4 + 6g̃

(1)
2 g̃

(1)
2

+6g̃
(3)
4 g̃

(3)
4 + 6g̃

(3)
2 g̃

(3)
2

)
(30)

∂g
(2)
4

∂l
= − 1

2πvF

(
g
(1)
4 g

(1)
4 − g

(2)
1 g

(2)
1

−g
(3)
1 g

(3)
1 − g

(3)
4 g

(3)
4

)
(31)

∂g
(3)
4

∂l
=

(
2 − K+ − 1

K−

)
g
(3)
4 − 1

πvF

(
g
(3)
4 g

(1)
4

+2g
(3)
2 g

(1)
2 − g

(3)
1 g

(1)
2

−g
(3)
2 g

(2)
1 − g

(3)
1 g

(2)
1

+12g̃
(1)
4 g̃

(3)
4 + 12g̃

(1)
2 g̃

(3)
2

)
. (32)

The variable l stands for minus the logarithm of the en-
ergy (temperature) scale measured in units of the high-
energy cutoff of the 1D model Ec ∼ vF kc (of the order of
∼0.1 eV). The large coefficients in front of the intertube
contributions arise from the number of nearest-neighbors
of each nanotube in the 3D array. Furthermore, we have
also incorporated a nonperturbative improvement of the
equations by writing the exact dependence of the scal-
ing dimensions on the forward-scattering couplings, ex-
pressed in terms of the K+, K− parameters. This is very
convenient in order to investigate the instabilities that
may appear when some of the forward-scattering couplings
leave the weak-coupling regime. As we will see later, K+

and 1/K− may vanish as the scaling flow given by the l

variable progresses towards low energies. The use of the
nonperturbative scaling dimensions allows then to discern
that the perturbative expansion in the forward-scattering
couplings does not blow up away from the weak-coupling
regime, and that instead it converges to well-behaved ex-
pressions in the scaling equations.

The new intertube interactions are themselves cor-
rected by processes that diverge logarithmically at low
energy, and that give rise to respective contributions to
the scaling of the intertube couplings. We can focus on
the analysis of g̃

(1)
2 , g̃

(1)
4 , g̃

(3)
2 and g̃

(3)
4 , which have values

given by the intertube potential (18) at the initial stage of
the low-energy scaling. As long as this potential decays ex-
ponentially for |l− l′|k > 1, we can neglect the influence of
other intertube interactions with 2kF momentum-transfer.
The second-order diagrams that renormalize the above in-
tertube couplings consist of particle-particle processes or
particle-hole loops involving a change of chirality, as il-
lustrated in Figures 9 and 10. Some of the contributions
depend on g̃

(2)
2 and g̃

(2)
4 . This means that these couplings

have to be taken into account for a consistent descrip-
tion of the low-energy scaling. The complete set of scaling
equations for the intertube couplings becomes:

∂g̃
(1)
2

∂l
= − 1

πvF

(
2g

(1)
4 g̃

(1)
2 + 2g

(1)
2 g̃

(1)
4 + 4g̃

(1)
4 g̃

(1)
2

+g̃
(2)
2 g̃

(1)
2 − g

(2)
4 g̃

(1)
2 − g

(2)
1 g̃

(1)
4

+2g
(3)
2 g̃

(3)
4 + g

(3)
4 g̃

(3)
2 + 4g̃

(3)
2 g̃

(3)
4

−g
(3)
1 g̃

(3)
4

)
(33)
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2
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= − 1

πvF
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2g

(1)
4 g̃

(3)
2 + 2g

(3)
2 g̃

(1)
4 + 4g̃

(1)
4 g̃

(3)
2

+g
(3)
4 g̃

(1)
2 + 2g

(1)
2 g̃

(3)
4 + 4g̃
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2 g̃
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4

−g
(3)
1 g̃
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4 − g

(2)
4 g̃

(3)
2 − g

(2)
1 g̃

(3)
4

−g̃
(2)
2 g̃

(3)
2
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4
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πvF

(
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(1)
2
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4
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πvF
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4
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2πvF

(
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= − 1

2πvF

(
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(1)
2 g̃
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2 − g̃

(3)
2 g̃

(3)
2

)
. (38)

Following the flow of the scaling equations, the backscat-
tering and Umklapp interactions are progressively en-
hanced as the theory is scaled down to low energies.
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Fig. 9. Second-order diagrams with logarithmic dependence

on the frequency renormalizing the intertube g̃
(1)
2 interaction.

The wavy lines stand for intratube interactions and the dashed
lines (without arrow) for interactions between nearest-neighbor
nanotubes l, l′ in a 3D array. The rest of the lines keep the same
meaning as in Figure 7.

At the initial stage of the renormalization, the values of
the couplings are dictated by the Coulomb interaction
and, in the case of intratube couplings, also by the effec-
tive interaction mediated by phonon-exchange. Regard-
ing the Coulomb interaction, its contribution to forward-
scattering couplings is given by the RPA calculation ex-
posed above. Thus we have g

(4)
4 = g

(4)
2 = g

(2)
2 = g

(2)
4 =

V
(r)
l,l (k = 0)/vF , following the trend shown in Figure 5,

while g̃
(2)
2 = g̃

(2)
4 = V

(r)
l,l′ (k = 0)/vF , with the poten-

tial for nearest-neighbor l, l′ represented in Figure 6. For
the chirality-breaking processes, the different symmetry
of ingoing and outgoing electron modes implies also a
significant reduction of the Coulomb potential, as eval-
uated in reference [7]. The result is that, for the arm-
chair (3, 3) nanotubes, there is a repulsive component
in the backscattering and Umklapp interactions at small

Fig. 10. Second-order diagrams with logarithmic dependence

on the frequency renormalizing the intertube g̃
(3)
2 interaction.

The wavy lines stand for intratube interactions and the dashed
lines (without arrow) for interactions between nearest-neighbor
nanotubes l, l′ in a 3D array.

momentum-transfer whose strength can be estimated as
≈0.23 vF /κ. This applies to the couplings g

(1)
2 , g

(3)
2 , g

(1)
4

and g
(3)
4 , as well as to the corresponding intertube cou-

plings at small momentum-transfer. For the intratube cou-
plings with the large momentum-transfer 2kF , the contri-
bution by the Coulomb interaction can be obtained from
the Fourier transform of the potential (1). The strength
estimated in this way turns out to be ≈0.06vF/κ.

Dealing now with the contribution from the effective
phonon-mediated interaction, we note that the situation
is reversed, and that the backscattering and Umklapp
couplings at vanishing momentum-transfer get a smaller
component than the couplings for momentum-transfer
around 2kF . Previous estimates had already found that
the ratio between these two different strengths is approx-
imately 1/3 [28]. More recent calculations of the phonon
spectrum by means of density functional theory have
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Fig. 11. Phase diagram showing the different low-energy in-
stabilities in the array of (3, 3) nanotubes, depending on the
dielectric constant κ and the effective coupling λ of the phonon-
mediated interaction. The three thin curves correspond to con-
tour lines of constant critical scale ωc = Ec exp(−lc), with
lc = 4, 6, 8 from top to bottom.

led to a similar proportion [15]. More precisely, it has
been found that the contributions of all the phonons
with momentum-transfer 2kF add to an effective coupling
λ ≈ 0.1, while the contributions of the phonons near the
zone center give an effective coupling ≈λ/3. These more
accurate estimates are about three times smaller than
those quoted in reference [28]. Anyhow, we will consider
the phase diagram of the (3, 3) nanotubes by spanning
a suitable range in the scale λ of the two effective cou-
plings, covering the values between the different estimates
in references [15] and [28].

In order to determine the electronic instabilities that
may appear at low energies, we have solved the set of scal-
ing equations (24–38), taking initial values for the cou-
plings according to the above discussion. The couplings
approach in general a regime where they grow large as
l → ∞. Regarding the forward-scattering interactions,
g
(2)
4 becomes increasingly repulsive, leading to a singu-

larity characterized by either the vanishing of K+ or the
divergence of K−, depending on the region of the phase
diagram. The scaling of the interactions stops at the low-
energy scale ωc ≡ Ece

−lc corresponding to the point lc
where the singularity is reached. This has actually the
character of a critical point, since it gives rise to the open-
ing of a branch cut and nonanalytic behavior in the corre-
sponding Luttinger liquid parameter K+ or K− [29]. We
have plotted in Figure 11 the phase diagram of the (3, 3)
nanotubes showing the two different regions of singular
behavior, as a function of the dielectric constant κ and
the effective coupling λ of the phonon-mediated e–e inter-
action.

In general, the enhancement of backscattering and
Umklapp interactions upon scaling may lead to a large
growth of electron correlations, pointing at the tendency
towards long-range order in the electron system. We have
analyzed this possibility through the computation of dif-
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Fig. 12. Plot of different response functions at κ = 2 and
λ = 0.1.

ferent response functions

χ(k, ω) = −i

∫ +∞

−∞
dt

∫ L

0

dxeiωteikx〈TO(x, t)O(0, 0)†〉
(39)

where the pair field O characterizes a particular type of
ordering. In the system under consideration, the most im-
portant correlation functions are found to be given by the
following (Fourier transformed) fields:

ODW,µ(k ≈ 2kF ) =
1

2
√

L

∑
p,α,β

[
Ψ †

R1α(p − k)σα,β
µ ΨL2β(p)

+ Ψ †
L1α(p − k)σα,β

µ ΨR2β(p)
]
,

ODW ′,µ(k ≈ 0) =
1

2
√

L

∑
p,α,β

[
Ψ †

R1α(p − k)σα,β
µ ΨL1β(p)

+ Ψ †
R2α(p − k)σα,β

µ ΨL2β(p)
]
,

OSC,µ(k ≈ 0) =
1

2
√

L

∑
p,α,β

α
[
ΨR1α(−p + k)σ−α,β

µ ΨL2β(p)

+ ΨR2α(−p + k)σ−α,β
µ ΨL1β(p)

]
,

where, for density wave (DW) operators, µ = 0 corre-
sponds to a charge-density wave (CDW) and µ = 1, 2, 3
to a spin-density wave (SDW); while, for superconducting
(SC) operators, µ = 0 stands for singlet superconductivity
and µ = 1, 2, 3 for triplet superconductivity (σα,β

µ are the
Pauli matrices, with σα,β

0 = 12×2).
The derivatives with respect to the frequency of the

response functions obey actually scaling equations [24],
whose solution allows to compare the relative growth of
the different electron correlations. By looking at the low-
energy scaling, we have checked however that none of
the response functions shows a very large growth, down
to the point ωc where the scaling flow breaks down due
to the singularity in the Luttinger liquid parameter. This
singular behavior occurs therefore before the appearance
of any tendency to long-range order in the electron sys-
tem. This is illustrated for a typical instance in Figure 12,
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where it can be observed that only the CDW correlations
with vanishing momentum show a significant growth as
the critical point is approached.

We remark that the instabilities that we find in the
(3, 3) nanotubes are in wide contrast with respect to those
in armchair nanotubes of typical diameter. This can be
explained as there are a number of couplings that have a
relevant dependence on nanotube diameter. In particular,
the Coulomb contribution to backscattering and Umklapp
couplings are inversely proportional to the nanotube ra-
dius. This also applies to the contributions from phonon-
exchange to the same channels, as the electron-phonon
couplings are inversely proportional to the square root
of the linear mass density. The competition between the
Coulomb and the phonon-mediated interaction also takes
place in the thicker nanotubes, but the balance leads to a
weaker net effective interaction in the mentioned channels.
As long as only the backscattering and Umklapp interac-
tions tend to destabilize the Luttinger liquid regime, the
instabilities found for instance in the (10, 10) nanotubes
turn out to be in general at much lower energy scales than
in the (3, 3) nanotubes [29].

Moving to nanotubes of typical thickness, there is also
a change in the character of the low-temperature phases,
since now the response functions are sensitive to the fact
that the scaling extends down to much lower energy scales.
In nanotubes of typical diameter, the CDW and SC cor-
relations have a substantial growth at scales which may
be more than 3 orders of magnitude below the cutoff Ec.
In experimental setups where there is a large number of
conducting channels (nanotube ropes, multi-walled nan-
otubes), the superconductivity turns out to be a weak-
coupling effect, driven by a sufficiently large growth of
the intertube Cooper-pair tunneling at low energies. In
contrast with this picture, the phases characterized by
K+ = 0 and K−1

− = 0 are found in our analysis as the sys-
tem enters into the strong-coupling regime, when the ratio
of some of the forward-scattering couplings to the Fermi
velocity becomes of order 1. This coincides with previ-
ous observations that the enhancement of the effective at-
traction in the small-diameter nanotubes should lead to
strong-coupling phases arising from the breakdown of the
Luttinger liquid [30], but without implying the transition
to a superconducting state.

The physical meaning of the two different phases
shown in Figure 11 can be clarified by recalling that K+

and K− give the strength of the uniform density correla-
tions. If we define uniform density operators by

ρ±(x) = ρL±(x) + ρR±(x) (40)

we obtain readily from equations (13) and (14) that

〈ρ±(x)ρ±(0)〉 ≈ K±
π2

1
x2

. (41)

Thus, the phase given by the divergence of K− is ap-
proached through a regime where the uniform density cor-
relations in the — sector become increasingly large. This
signals the tendency of the system to form clusters with

a mismatch of charge between the bonding and the anti-
bonding subbands. This effect is a particular realization
of the so-called phase separation, in which the appearance
of spatial inhomogeneities leads to a breakdown of the de-
scription of the system in terms of microscopically aver-
aged variables. The singularity found in K− is nothing but
a reflection of such a breakdown, manifested also in the
consequent divergence of the compressibility κ− obtained
from equation (15).

On the other hand, the vanishing of K+ implies the
suppression of the uniform density correlations in the
+sector, corresponding to the total charge. This effect
does not describe however the transition to an insulat-
ing regime, since the system does not become incompress-
ible in the new phase. We recall that the approach to
the critical point is driven by the growth of the coupling
g
(2)
4 , which leads ultimately to the vanishing of the prod-

uct u+K+ in equation (11). However, the ratio u+/K+ in
equation (12) remains finite anyhow, implying a nonzero
value of the compressibility as given by equation (15).
The genuine feature of the phase with K+ = 0 corre-
sponds actually to the vanishing of the renormalized ve-
locity u+, which has the physical implications discussed
below in connection with the phenomenology reported in
reference [14].

4 Discussion

The (3, 3) carbon nanotubes may fall therefore into two
different low-temperature phases, whose physical proper-
ties are dictated by the vanishing of K+ and the divergence
of K− respectively. We remind in particular that, for the
experimental setup of reference [14], a reasonable choice
of the parameters is κ ∼ 2 ÷ 4 and λ ∼ 0.1, correspond-
ing to the K+ = 0 phase. In this case the temperature of
transition to the new phase results strongly dependent on
the dielectric constant of the environment, ranging from
Tc ∼ 10−1 K (at κ ≈ 2) to Tc ∼ 10 K (at κ ≈ 4).

The behavior of the response functions follows in gen-
eral the trend shown in Figure 12 and, while the density-
wave correlations tend to grow by approaching the critical
value lc, the superconducting correlations remain small
anyhow. This finding seems to rule out the possibility
of having superconducting correlations in the (3, 3) nan-
otubes, at least under the physical conditions considered
in the present paper. We coincide in this respect with the
conclusions reached in previous analyses by means of other
computational methods [15,16]. We have found however
that the appearance of a CDW instability is precluded
by the breakdown of the Luttinger liquid behavior, which
cuts off the growth of the different correlations.

Our results confront the claim that the experimen-
tal signatures reported in reference [14] should provide
evidence for a superconducting transition in the small-
diameter nanotubes. This interpretation has been also
challenged by studies of the electron correlations in the
(5, 0) nanotubes [15,31]. We have shown that, even con-
sidering the large screening effects from the arrays of
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nanotubes in the experimental samples, the effective e–
e attraction arising from the exchange of phonons is not
large enough to support the appearance of superconduct-
ing correlations in the (3, 3) nanotubes. If the Coulomb
interaction is further screened by a suitable variation of
the dielectric constant of the medium, the system is driven
then into the phase characterized by the divergence of K−
and the related compressibility κ−, as shown in Figure 11.
This has the same character that the instability given by
the Wentzel-Bardeen singularity, where the divergent com-
pressibility is the signal of the spatial separation of the
system into regions with different electron density [30,32].

Anyhow, the experimental conditions of the samples
described in reference [14] seem to place the system in
the region of the phase diagram characterized by the van-
ishing of K+. As explained above, the critical point at
K+ = 0 does not describe a conventional metal-insulator
transition, as long as the compressibility κ+ remains al-
ways nonvanishing. However, the decay of K+ leads to the
vanishing of the differential conductivity, which is directly
related to the tunneling density of states n(ε). The strong
suppression of this quantity is a manifestation of the ab-
sence of electron quasiparticles in the system. Within the
Luttinger liquid framework, the tunneling density of states
follows the low-energy behavior

n(ε) ∼ ε(K++1/K++K−+1/K−−4)/8. (42)

The approach to the critical point at K+ = 0 is con-
trolled in our model by the logarithm l of the low-energy
scale, which must be put in correspondence with the tem-
perature variable in the experiments. What we observe
from equation (42) is that the density of states follows a
power-law behavior, with an increasingly large exponent
as the point of the transition is approached. This kind
of depletion of the density of states is consistent with the
appearance of the pseudogap observed in the I−V charac-
teristics reported in reference [14]. A quantitative compar-
ison with the experimental data is precluded by the fact
that the measure of the voltage characterizing the pseudo-
gap comes from the sum of multiple voltage drops, as the
nanotubes are cut along the longitudinal direction into a
very large number of segments. It is anyhow remarkable
that the pseudogap develops through an evolution of the
I − V curves which is qualitatively similar to that of a
power-law behavior with divergent exponent for decreas-
ing temperature.

As observed above, the distinctive feature of the phase
with K+ = 0 is actually the vanishing of the product
u+K+. This quantity appears in the Hamiltonian (10), in
front of the square of the momentum Π+(x). This opera-
tor corresponds to the total current in the electron system,
so that the quantity u+K+ plays therefore the role of a
current velocity [33]. Thus, the essence of the phase with
K+ = 0 is to be found, on physical grounds, in the appear-
ance of very soft modes in the sector of current excitations.
This has important implications regarding the magnetic
properties, since the vector potential couples naturally to
the total current. The vanishing of the current velocity
u+K+ leads to the divergence of the current-current re-

sponse function, which is proportional to 1/u+K+ in the
static limit [33]. As analyzed in reference [34], this is in
agreement with the behavior of the magnetic susceptibil-
ity observed experimentally, which has a divergence at
low temperature concomitant with the development of the
pseudogap. We conclude therefore that the phenomenol-
ogy derived from the K+ = 0 phase of the (3, 3) carbon
nanotubes seems to be consistent, at least qualitatively,
with the main experimental signatures reported in refer-
ence [14]. Further experimental work would be needed to
clarify the existence of such a critical point in the (3, 3)
nanotubes, its physical properties, and its stability under
changes of relevant experimental conditions.
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15. D. Connétable, G.-M. Rignanese, J.-C. Charlier, X. Blase,
Phys. Rev. Lett. 94, 015503 (2005)

16. K.-P. Bohnen, R. Heid, H.J. Liu, C.T. Chan, Phys. Rev.
Lett. 93, 245501 (2004)

17. R. Barnett, E. Demler, E. Kaxiras, Phys. Rev. B 71,
035429 (2005)
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